培訓(xùn):高中輔導(dǎo)、高考輔導(dǎo)、藝考文化課輔導(dǎo)
?中考越來(lái)越近,可以說(shuō)近在咫尺,如何在最后階段使中考成績(jī)?cè)偻咸嵋惶岢闪撕芏嗉议L(zhǎng)和考生關(guān)心的話題。進(jìn)入初三以來(lái),很多考生每天面對(duì)不斷的習(xí)題,感覺(jué)有永遠(yuǎn)做不完的題目,陷入一種題海中,但成績(jī)總是不見(jiàn)進(jìn)步。因此,我們今天就來(lái)講講中考數(shù)學(xué)容易拉分板塊,希望能幫助到大家。
最容易拉分板塊:函數(shù)綜合問(wèn)題
在近幾年的全國(guó)各地中考中,盡管試卷不一樣,但函數(shù)綜合問(wèn)題都占了一定的比重,特別是在最后的幾個(gè)大題總會(huì)考到。
為何函數(shù)綜合問(wèn)題會(huì)如此重要呢?因?yàn)楹瘮?shù)的思想方法可以反映出一個(gè)數(shù)學(xué)問(wèn)題的內(nèi)在聯(lián)系,把抽象的數(shù)學(xué)問(wèn)題進(jìn)行具體化,建立函數(shù)關(guān)系,并利用函數(shù)的圖像和性質(zhì)來(lái)研究、解決問(wèn)題。
初中數(shù)學(xué)學(xué)習(xí)函數(shù)一般就這么三大類:
一次函數(shù)(包括正比例函數(shù)),它們所對(duì)應(yīng)的圖像是直線;反比例函數(shù),它所對(duì)應(yīng)的圖像是雙曲線;二次函數(shù),它所對(duì)應(yīng)的圖像是拋物線。
函數(shù)的思想方法主要包括以下幾方面:運(yùn)用函數(shù)的有關(guān)性質(zhì)解決函數(shù)的某些問(wèn)題;以運(yùn)動(dòng)變化的觀點(diǎn),分析和研究具體問(wèn)題中的數(shù)量關(guān)系,建立函數(shù)關(guān)系,運(yùn)用函數(shù)的知識(shí),使問(wèn)題得到解決;經(jīng)過(guò)適當(dāng)?shù)臄?shù)學(xué)變化和構(gòu)造,使一個(gè)非函數(shù)的問(wèn)題轉(zhuǎn)化為函數(shù)的形式,并運(yùn)用函數(shù)的性質(zhì)來(lái)處理這一問(wèn)題。
二次函數(shù)綜合題.
題干分析:
(1)把點(diǎn)D坐標(biāo)代入拋物線y=π/3(x+1)(x﹣3),即可得出m的值,再令y=0,即可得出點(diǎn)A,B坐標(biāo);
(2)根據(jù)尺規(guī)作圖的要求,畫(huà)出圖形,如圖1所示;
(3)過(guò)點(diǎn)D作射線AE的垂線,垂足為N,交AB于點(diǎn)M,此時(shí)DN的長(zhǎng)度即為ME+MN的最小值;
(4)假設(shè)存在點(diǎn)P,使以P、G、A為頂點(diǎn)的三角形與△ABD相似,設(shè)點(diǎn)P坐標(biāo),再表示出點(diǎn)G坐標(biāo),計(jì)算△ABD的三邊,根據(jù)勾股定理的逆定理,判斷三角形的形狀,即可得出結(jié)論,若△ABD是直角三角形,即可得出相似,再得出對(duì)應(yīng)邊成比例,求得點(diǎn)P坐標(biāo)即可.
解題反思:
本題考查了二次函數(shù)的綜合題,還考查了用待定系數(shù)法求二次函數(shù)解析式、勾股定理和逆定理以及軸對(duì)稱﹣?zhàn)钚÷窂絾?wèn)題等重要知識(shí)點(diǎn),難度較大.
中考考查函數(shù)綜合題一般是先給定直角坐標(biāo)系和幾何圖形,之后再求函數(shù)的解析式(或在題干中已告訴我們函數(shù)解析式),然后結(jié)合函數(shù)與幾何的圖像和性質(zhì)進(jìn)行研究,如求點(diǎn)的坐標(biāo)或研究圖形的某些性質(zhì)。
求已知函數(shù)的解析式主要方法是待定系數(shù)法,關(guān)鍵是求點(diǎn)的坐標(biāo),而求點(diǎn)的坐標(biāo)基本方法是幾何法(圖形法)和代數(shù)法(解析法)。
以上就是成都戴氏教育溫江校區(qū)為您提供中考數(shù)學(xué)中最容易拉分的題型是什么?的全部?jī)?nèi)容,更多內(nèi)容請(qǐng)進(jìn)入學(xué)習(xí)資料 查看